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Whileconventionalcomputersmustbeprogrammedinalogicalfashionbyapersonwho
thorough ly understands the task to be performed, the motivation behind neural networks is to
develop machines which can train themselves to perform tasks, using available information about
des_.,iredsystem behavior and learning from experience.

Goals of the project begun under the Faculty Summer Fellowship program were threefold:

1) to evaluate various neural net methods and generate computer software to implement those
deemed most promising on a personal computer equipped with Matlab

2) to evaluate methods currently in the professional literature for system control using neural
nets to choose those most applicable to control of flexible structures

3) to apply the control strategies chosen in 2) to a computer simulation of a test article, the
Control Structures Interaction Suitcase Demonstrator, which is a portable system

consisting of a small flexible beam driven by a torque motor and mounted on springs tuned to
the first flexible modeof the beam.

At the present time, the first two goals have been met, and work on the third is on-going. Results of
each will be discussed below.

Using many references, the currently available methods fortraining neural nets were examined
and evaluated for ease of implementation, reliability, computer requirements, and applicability to
control systems. Some methods were rejected becauseof the vast numbers of neurons required to
work practical problems(e.g., Bidirectional Associative Memories); some, for example Boltzmann

machines, becauseof the very large amount of computer time required to train the nets; and some,
like Hopfield nets, for the extreme difficulty of implementation ( in order to utilize a Hopfield net, a

Lyapunov function must be generated for system "goo:lness" and appropr iate weight edjustments
basedon that Lyapunov function must be determ ined--a procedure requiring vast "mathematical
expertise and ingenuity" [ I ] ). While there is currently no optimum method for neural nets, after
careful evaluation, back-propagation was chosen as the most practical choice for implementation.
This method changes network weights proportional to the partial derivative of the system error
function with respect to each weight. This approximates a gradient descent procedure, and therefore
assur_ that the system will reach an energy minimum. Difficulties with back-propagation include
possible network paralysis if neurons saturate, the possibility of reachinga local rather than e
global minimum, and long training times. However, the method is very easy to implement
algorithmicaily, and is used in the majority of the controls applications appearing in the current
literature. Methods have been proposed to fix difficulties with back-propagation, but each has its
own associated problems ( for example, Cauchy training eliminates the problem of convergence to
local minima, but h_ a greater instance of network paralysis than systems using beck-propagation,
and a training time one hundred times that of the already lengthy back-propagation training). Thus
back-propagation was chosen as the neural net training method to be implemented.

UsingMatlab,softwarewas generatedimplementingaback-propagationtrainedneuralnetonan

IBM compatibleDerT-,on-Dlcomputer.For ,3givenproblem,number oflayersand number ofneurons

must be "empiricallydetermined,"[2] soneuralnetsofseveralsizesandconfigurationswere

compared.,Someauthorshavehypothesizedthatfewerneuronsmay beusedforagivenproblem if

thoseneuronsare arrangedinmore layers[1].Inthetrialsconducted,nonetworkwas foundwhich

failedtoconvergeeventually,sonoevidencewas obtainedtosupportor disprovethishypothesis.

However,empirIcalevidencedoessuggestthatgiventhatbothwilleventuallyconvergetoasolution,

aneuralnetwithfewerlayerswillconvergemore quickly.FigureI,showingtheerrormeasure
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(total sum square error) versus number of training epochsfor a two-layer neural net (with one
nonlinear hidden layer and a linear output layer) and a three-layer net (with two nonlinear hidden
tayers and a linear output layer), is typical of the results generated. V

In the second phase of the project, recent publications in the professional literature regarding
applications of neural nets to control problems were examined and compared. Methods currently
available can be divided into roughly three categories:

a) methods in which a neural net is trained to emulate a currently existing controller, whether
human or computerized (such as [3] );

b) methods in which nets generate somestate or function which is then used in astandard
controller design (for example, [4] in which the neural net is used to generate estimates of
unknown nonlinear system parameters, which are then used In a standard adaptive
controller);

c) methods in which the neural net generates a controller for an unknown system without
human intervention [2].

Of thethreetypes,thethirdisby farthemostsophisticated,asitassumesnomathematical

knowledge,ofthesystemtobecontrolled,anddoesnotrequireahuman tobeabletocontrolthe

systemor togeneratea controllerwhich successfullydoesso.Thiswouldmean thatnonlinear

systemswhichcouldbe modeledpoorly,Ifatall,theoreticallycouldstillbesuccessfullycontrolled

by a trainedneuralnet.Itwas decidedthatsucha methodwouldbethebestcandidateforcontrolling

flexiblespacestructures.

The particular methodcheosenfor application to the test system was that in [2]. This is atime
beck-propagation system. First, a neural net must be trained to emulate the behavior of the

unknown system using standard back-propagation methods. This trained emulator is then usedto
train the controller as follows:

I ) A time trajectory for system behavior is generated, with the untrained controller
generating essentially random inputs to the emulator.

2) The final emulator output is comparedto the desired output.
3) Theerror is propagatedbeck through the emulator to generate an equivalent controller

error, which is used to train the controller.

4) The process is continued, propagating back through each time step of the trajectory until the
controller has beentrained for all time steps.

5) Steps 1-4 are repeated for many trajectories.

Currently on-geing is work applying the method in [2] to the test article. The neural net chosen

for use had onehiddennonlinear layer containing 35 neurons and a linear output layer of 10
neurons to scale the outputs. Oneproblem in implementing the method was difficulty in obtaining
accurate training data for the C$1Demonstrator; the final datawas generated by Mark Wharton and
John Sharkee of NASA,usinga Matlab simulation of the system.

Anotherdifficultyencounteredwas ill-conditioningofthedata.Althoughitwas mentioned

nowhere intheliterature,itwas discoveredthatifinputstotheneuralnetvaryby severalorders

ofmagnitude,as isthecaseoftheDemonstrator,thenonlinearneuronlayersoonsaturates,sothat

trainingofthatlayercomes toavirtualstandstill.Thlscausesthenonlinearlayertosendthesame

inputtothelinearlayerregardlessofthesysteminput,causingthelinearweightstogrow without
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bound as they try to adjust to give varying outputs a constant input. This causes the error measure
to orow without bound. This problem was solved by scaling the trajectories of very laroe system
states to bring them down to the level of the others and prevent layer saturation.

It was also discovered that the 8088 PC being us_l for software development was tooslow to be
practical in training a neural net to emulate the test article; currently the software is being run on
an 80386 machine with ! 0,000 training patterns comprising asingle epoch ( a single epoch takes
approximately 45 minutes on the 80386 and over 24 hours on the 8088). As yet, the emulator has

not converged to zero error, but to a TS5 of approximately 4. Figure 2, of T_ versus epoch
number, shows this conver.mnce. When state traiectories for both the system and the emulator are

compared, results for different states range from that in state X 1 where the emulator doe_not

adequately follow the system response ( Figure 3) to state X3 ( Figure 4) In which the two are

practicallyidentical.Possiblereasonsforthisincludean ina&-_uatetr:._ining_t (i.e.,onewhich

doesnotfullyspanthestatespace)andaneuralnetwithan inadequatenumber ofneuronsand/or

layers.Work toperfecttheemulatoriscontinuing.Atsuchtimeastheemulatoradequately

predictsallsystemstates,thecontrollerwillbe trainedaspartofan on-golngeffortduringthe

comingacademicyear.Oncethecontrolleristrained,itsperformancemay becomparedtothe

currentlyexistingcontrollersforthesystemintermsofcomputationrequirements,robustness,

etc.Otherneuralnetstrategies,suchasusingtheneuralnetasan estimatorforsystemparameters

neededby standardadaptivecontrollers,couldalsobeaddressedatsome futuretime.

While neural nets have yet to be fully evaluated as a tool for control of nonlinear or poorly
modeled systems, they show great potential in this area, and deserve further consideration and study.
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